Prognostic Analysis of Surgical Resection for Pulmonary Metastasis from Hepatocellular Carcinoma

Yusuke Takahashi1 · Norihiko Ikeda2 · Jun Nakajima3 · Noriyoshi Sawabata4 · Masayuki Chida5 · Hirotoshi Horio6 · Sakae Okumura7 · Masafumi Kawamura1 · The Metastatic Lung Tumor Study Group of Japan

© Société Internationale de Chirurgie 2016

Abstract

Introduction Pulmonary metastases are the most common among extrahepatic recurrences from hepatocellular carcinoma (HCC). It causes high risk of HCC-related death, despite recent progress in therapeutic options. However, a role of pulmonary metastasectomy as well as prognostic factors after metastasectomy has not been well established. We aimed to investigate survival outcomes and prognostic factors after pulmonary resection for metastases from HCC.

Methods A series of 93 patients who underwent pulmonary resections for metastases from HCC between June 1990 and July 2013 from multi-institutional database were retrospectively evaluated. Perioperative clinicopathological data and their association with prognosis were investigated.

Results Of 93 patients, 77 had one pulmonary metastasis, and 16 had two or more. Recurrence after pulmonary resection was noted in 60 patients (64.5 %). The estimated 5-year overall survival rate was 41.4 % with median survival time after pulmonary metastatectomy of 39.0 months. Univariate prognostic analysis showed that disease-free interval of ≥12 months was significantly associated with favorable outcomes in both overall survival (5-year rate, 59.3 vs. 28.7 %, p = 0.026) and disease-specific survival (5-year rate, 62.5 vs. 36.2 %; p = 0.038) after pulmonary metastatectomy. A multivariate analysis revealed that disease-free interval was an independent prognostic factor (HR = 2.020, 95 % CI, 1.069–3.816, p = 0.030).

Conclusion We have shown that a disease-free interval was an independent prognostic factor in patients who underwent pulmonary resection for metastasis from HCC. Also, pulmonary metastasectomy can be one of the therapeutic choices for select patients.

Electronic supplementary material The online version of this article (doi:10.1007/s00268-016-3580-4) contains supplementary material, which is available to authorized users.

Yusuke Takahashi
yusuketakahashigts@gmail.com

1 Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
2 Department of Surgery, Tokyo Medical University, Tokyo, Japan
3 Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
4 Osaka University Graduate School of Medicine, Suita Osaka, Japan
5 Department of General Thoracic Surgery, Dokkyo Medical University, Tochigi, Japan
6 Department of Thoracic Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
7 Department of Chest Surgery, Cancer Institute Hospital, Tokyo, Japan

Published online: 02 June 2016
the following exclusion criteria: unavailable essential data criterion. Subsequently, 17 patients were excluded due to
selected the 110 patients in accordance with the inclusion
belonging to the consortium. Among the population, we
complete resection for primary HCC in the institutions
underwent surgical resection for PM from HCC after
registry. Our inclusion criterion was all patients who
resection for metastatic lung tumors were enrolled in this
2013, a total of 3473 patients who underwent surgical
malignancies. During the period from June 1990 to July
pulmonary metastasectomy with curative intent for various
copathological data from patients who underwent pul-
Study Group of Japan in 1984, and have collected clini-
We established the 26-institution Metastatic Lung Tumor
Patients and methods

Introduction

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-induced death worldwide. Although recent
advances in local and systemic therapeutic options for intrahepatic recurrence have resulted in improved local
control rates [1, 2], the recurrence rate after local therapy reportedly still ranges from 75 to 100 % [2–4]. Thus, the
long-term prognosis of HCC after local therapy remains poor [2, 5]. To improve outcomes further, more aggressive
treatment of extrahepatic recurrence may be required. Pulmonary metastasis (PM) is the most common type of
extrahepatic recurrence from HCC, which occurs much less frequently than intrahepatic recurrence [4]. Surgical treat-
ment for extrahepatic recurrence is considered to be controversial to date [6]; however, recent literature suggests
that pulmonary metastasectomy is an effective treatment choice in select patients [7, 8]. However, prognostic factors
after pulmonary metastasectomy are currently not well understood. Our study aimed to investigate long-term sur-
vival outcomes and prognostic factors after pulmonary resection for metastasis from HCC.

Patients and methods

We established the 26-institution Metastatic Lung Tumor Study Group of Japan in 1984, and have collected clini-
copathological data from patients who underwent pulmonary metastasectomy with curative intent for various
malignancies. During the period from June 1990 to July 2013, a total of 3473 patients who underwent surgical
resection for metastatic lung tumors were enrolled in this registry. Our inclusion criterion was all patients who
underwent surgical resection for PM from HCC after complete resection for primary HCC in the institutions
belonging to the consortium. Among the population, we selected the 110 patients in accordance with the inclusion
criterion. Subsequently, 17 patients were excluded due to the following exclusion criteria: unavailable essential data
(n = 11) and follow-up of <12 months (n = 6). Conse-
sequently, the study cohort comprised 93 (2.7 %) consecutive patients with PM from HCC who underwent surgical
resection. Institutional Review Board-approved informed consent was obtained from all patients. The following
clinicopathological data were recorded in the registration form: gender, date of birth, date and time of treatment for
HCC, date of detection of PM, number of lesions on right and left lungs, maximum tumor diameter, date and time of
resection of PM, number of resections, type of surgical procedure, and the date of last follow-up. Preoperative
diagnosis of PM was made based on the computed tomography (CT) findings. Chest CT of each patient was
preoperatively evaluated to assess which procedure is needed to secure sufficient surgical margins. Surgical
procedure was decided in consideration of intraoperative findings exclusively by each attending surgeon. Resected
specimens were pathologically assessed.

Although detailed liver function was not mandatory, the patients were required sufficient liver function and car-
diopulmonary reserve for pulmonary resection. The indica-
tion of surgical resection for PM was independently
determined by each institution, even though we have
generally assumed the criteria proposed by Thomford et al.
as a standard [9], which require that the primary malign-
nancy to be controlled, and there are no other metastatic
lesions and also sufficient general reserve of the patient for
surgical resection. Patients were followed up with chest CT
scan twice or thrice a year to detect the recurrence of HCC
including the PM, and additional imaging studies were
performed at the discretion of the treating physician, if
necessary. Survival outcome surveys were subsequently
conducted at 1-year intervals by the registration center.

Overall survival (OS) was measured by comparing the
date of pulmonary metastasectomy to the date of death
from any cause, or the date on which the patient was last
known to be alive. The disease-specific survival (DSS)
time was measured from the date of pulmonary meta-
staticectomy to the date of death from HCC; the observa-
tions were censored at death from causes other than HCC;
locoregional recurrences, distant metastases, and second
primary cancer were ignored. Disease-free interval (DFI) was
defined as the time between the day of curative surgery
of intrahepatic lesion and the day of the detection of PM,
giving a DFI of 0 if PM were detected prior to the initial
liver resection. Survival curves were plotted, and cumula-
tive survival rates were calculated using the Kaplan–Meier
method. Comparisons were performed using the log-rank
test as a univariate analysis. To determine the independent
prognostic factors, a multivariate analysis was conducted
using the Cox-proportional hazard model. Two-category
comparisons were performed using the Pearson \(\chi^2 \) test and
the Fisher exact test for quantitative data. All the tests were

Abbreviations

HCC hepatocellular carcinoma
PM pulmonary metastases
CT computed tomography
OS overall survival
DSS disease-specific survival
DFI disease-free interval
IQR interquatile range
SD standard deviation

Introduzione

Il carcinoma del fegato (HCC) è un importante causante della morte causata da cancro. In seguito ai recenti
avventi in terapia locale e sistemica, il tasso di controllo locale ha migliorato, ma il tasso di ricorrenza dopo
terapia locale è rimasto basso [2, 5]. Per migliorare i risultati in termini di sopravvivenza, un trattamento più
aggressivo per la ricorrenza extraepatica potrebbe essere richiesto. La metastasi polmonare (PM) è il tipo di
ricorrenza extraepatica più comune dal HCC, ma è meno frequente rispetto alle ricorrenze intraepatiche [4]. Un
trattamento chirurgico per la ricorrenza extraepatica è considerato controverso, ma recenti studi hanno suggerito
che la metastasectomia polmonare può essere un trattamento efficace nei pazienti selezionati [7, 8]. Tuttavia, i
fattori prognostici dopo la metastasectomia polmonare non sono ben definiti. La nostra ricerca si è proposta di
investigare i risultati a lungo termine della sopralevazione e i fattori prognostici dopo la resezione polmonare
per la metastasi dal HCC.

Pazienti e metodi

Abbiamo creato il Gruppo di Studio per la Tumore Metastatico del Polmone della Giappone nel 1984, e abbiamo
raccolto dati clinicopatologici da pazienti che sono stati sottoposti a metastasectomia polmonare con intento
curativo per diversi carcinomi. Durante il periodo dal giugno 1990 al luglio 2013, un totale di 3473 pazienti che sono
stati sottoposti a resezione chirurgica per metastasi polmonare sono stati registrati in questo registro. La nostra
criterio di inclusione era il 110 pazienti in conformità con il criterio di inclusione. Successivamente, 17 pazienti sono
stati esclusi a causa dei seguenti criteri di esclusione: dati essenziali non disponibili (n = 11) e seguimiento sotto
12 mesi (n = 6). Successivamente, il gruppo di studio è composto da 93 (2.7 %) pazienti consecutivi con PM dal HCC
che sono stati sottoposti a resezione chirurgica. Il consenso informato è stato ottenuto da tutti i pazienti. I seguenti
data clinicopatologiche sono state registrati nel registro: genere, data di nascita, data e ora del trattamento per
HCC, data e ora della deteczione di PM, numero di lesioni sulle due polmoni, diametro massimo del tumore,
data e ora della resezione di PM, numero di resezioni, tipo di procedura chirurgica, e la data della seguente
osservazione. La diagnosi di PM è stata fatta sulla base dei dati di TC. La TC di ciascun paziente è stata
preoperatoriamente valutata per valutare quale procedura è necessaria a garantire i margini chirurgici sufficien.
La decisione della procedura è stata fatta in base ai criteri del chirurgo o per i criteri proposti da Thomford et al.
[9], che richiedono che il cancro principale sia controllato, non ci siano altre metastasi e che il paziente abbia un
riserve generali sufficienti per il trattamento chirurgico. I pazienti sono stati seguiti con TC polmonare due
o tre volte all’anno per la deteczione della ricorrenza del HCC, compresa la PM, e studi di imaging additivi possono
essere fatti a discrezione del medico curante. Il follow-up della sopravvivenza è stato condotto a intervalli di
1 anno tramite il centro di registrazione.

La sopravvivenza complessiva (OS) è stata misurata dalla data della metastasectomia polmonare alla data della
decesso da qualsiasi causa, o la data sul quale il paziente è stato ultimamente noto vivo. La sopravvivenza specifica
del cancro (DSS) è stata misurata dalla data della metastasectomia polmonare alla data della morte da HCC; le
osservazioni sono state censurate alla morte da cause diverse da HCC; le ricorrenze locoregionali, distanza metastasi,
e secondo cancro principale sono stati ignorati. L’intervallo libero di malattia (DFI) è stato definito come il tempo tra
la data della ricoverazione polmonare e la data della deteczione di PM, sommando 0 se PM è stata detecita
prima della prima resezione. Curve di sopravvivenza sono state calcolate e i tassi di sopravvivenza cumulativa sono
state calcolati usando il metodo di Kaplan–Meier. Le comparazioni sono state condotte con il test di log-rank
come analisi univariata. Per determinare i fattori prognostici indipendenti, un’analisi multivariata è stata condotta
usando il modello di regressione di Cox. Le comparazioni a due categorie sono state condotte usando il test di
Pearson \(\chi^2 \) per i dati quantitativi. Tutti i test sono stati condotti con un livello di significatività del 0.05.
two-sided, and \(p \) values less than 0.05 were considered statistically significant. The statistical analysis was performed using SPSS software (version 20; SPSS Inc., Chicago, IL).

Results

We extensively reviewed 3473 patients who underwent pulmonary metastasectomy from June 1990 to July 2013, selecting 110 patients with PM from HCC who met our inclusion criteria. Then, 11 cases were excluded due to missing essential data as well as six other cases excluded due to insufficient follow-up period less than 12 months. Finally, we employed 93 patients and performed the following analysis (Fig. 1).

Baseline characteristics of the study cohort are presented in Table 1. Median postoperative follow-up was 42.0 months (IQR 21.5–65.0). The current cohort included 74 male (79.6 %) and 19 female (20.4 %), with median age at pulmonary metastasectomy of 64.0 (IQR 54.5–71.0) years. Histological grades of primary HCC were 86 cases of well-to-moderate and seven cases of poor. Median DFI was 17.0 (IQR 7.0–29.5) months. Of 93 patients, 77 had one PM, 12 had two, 2 had three, 2 had four, and the mean number of PM was 1.24 \(\pm \) 0.597 (mean \(\pm \) SD). Median greatest diameter of PM was 18.0 (IQR 12.0–27.0) mm. 43 cases had right-side lesions, 38 had left-side lesions, and 12 had bilateral lesions. 77 (82.8 %) underwent wedge resection, and 16 (17.2 %) underwent lobectomy or segmentectomy for PM.

Table 1 Baseline characteristics of the study cohort

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at metastasectomy (years, IQR)</td>
<td>64.0 (54.5–71.0)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>74</td>
</tr>
<tr>
<td>Female</td>
<td>19</td>
</tr>
<tr>
<td>Histological differentiation of primary HCC</td>
<td></td>
</tr>
<tr>
<td>Well-to-moderate</td>
<td>86</td>
</tr>
<tr>
<td>Poor</td>
<td>7</td>
</tr>
<tr>
<td>Median follow-up period (months, IQR)</td>
<td>42.0 (21.5–65.0)</td>
</tr>
<tr>
<td>Median disease-free interval (months, IQR)</td>
<td>17.0 (7.0–29.5)</td>
</tr>
<tr>
<td>Median greatest diameter of pulmonary metastasis (mm, IQR)</td>
<td>18.0 (12.0–27.0)</td>
</tr>
<tr>
<td>Laterality of pulmonary metastasis</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>43</td>
</tr>
<tr>
<td>Left</td>
<td>38</td>
</tr>
<tr>
<td>Bilateral</td>
<td>12</td>
</tr>
<tr>
<td>Number of metastasectomy</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Extent of resection</td>
<td></td>
</tr>
<tr>
<td>Wedge resection</td>
<td>77</td>
</tr>
<tr>
<td>Segmentectomy or lobectomy</td>
<td>16</td>
</tr>
<tr>
<td>Treatment for recurrence following metastasectomy</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>10</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>3</td>
</tr>
<tr>
<td>Other ablations</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1 Baseline characteristics of the study cohort. Median postoperative follow-up was 42.0 months (IQR 21.5–65.0). The current cohort included 74 male (79.6 %) and 19 female (20.4 %), with median age at pulmonary metastasectomy of 64.0 (IQR 54.5–71.0) years. Histological grades of primary HCC were 86 cases of well-to-moderate and seven cases of poor. Median DFI was 17.0 (IQR 7.0–295) months. Of 93 patients, 77 had one PM, 12 had two, 2 had three, 2 had four, and the mean number of PM was 1.24 \(\pm \) 0.597 (mean \(\pm \) SD). Median greatest diameter of PM was 18.0 (IQR 12.0–27.0) mm. 43 cases had right-side lesions, 38 had left-side lesions, and 12 had bilateral lesions. 77 (82.8 %) underwent wedge resection, and 16 (17.2 %) underwent lobectomy or segmentectomy for PM.
Recurrence after pulmonary resection was noted in 60 patients (64.5%) by April 2015. Disease-specific death was observed in 37 cases during the study period. The most common recurrence was intrahepatic in 52 patients, and pulmonary recurrence after pulmonary metastasectomy was detected in 2 patients (2.15%). No repeated pulmonary resection was performed in our series. For recurrent diseases following pulmonary metastasectomy, 10 patients underwent chemotherapy, 3 patients underwent radiotherapy, and 11 patients underwent other ablations for recurrence. As shown in Fig. 2, the estimated 5-year OS rate was 41.4%. The median OS time after pulmonary metastasectomy was 39.0 months.

To identify prognostic factors, we selected seven categorical variables: age (<65 years vs ≥65 years), gender (male vs female), DFI (<12 months vs ≥12 months), tumor laterality (unilateral vs bilateral), number of PM (solitary vs multiple), maximum tumor size (<30 mm vs ≥30 mm), and extent of resection (wedge resection vs segmentectomy or lobectomy). Table 2 shows the univariate prognostic analysis by Kaplan–Meier methods.

Table 2 Univariate prognostic analysis by Kaplan–Meier methods

<table>
<thead>
<tr>
<th>Factors</th>
<th>Patient no.</th>
<th>5-year survival (%)</th>
<th>p valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>47</td>
<td>42.8</td>
<td>0.900</td>
</tr>
<tr>
<td>≥65</td>
<td>46</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>74</td>
<td>41.8</td>
<td>0.375</td>
</tr>
<tr>
<td>Female</td>
<td>19</td>
<td>41.1</td>
<td></td>
</tr>
<tr>
<td>Histological grade of primary HCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well to moderately differentiated</td>
<td>86</td>
<td>40.4</td>
<td>0.573</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>7</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>History of recurrence before metastasectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>69</td>
<td>42.6</td>
<td>0.930</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>Disease-free interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 months</td>
<td>55</td>
<td>28.7</td>
<td>0.026</td>
</tr>
<tr>
<td>≥12 months</td>
<td>38</td>
<td>59.3</td>
<td></td>
</tr>
<tr>
<td>Laterality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>81</td>
<td>42.7</td>
<td>0.571</td>
</tr>
<tr>
<td>Bilateral</td>
<td>12</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>Number of PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solitary</td>
<td>77</td>
<td>42.8</td>
<td>0.838</td>
</tr>
<tr>
<td>Multiple</td>
<td>16</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Maximum diameter of PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30 mm</td>
<td>73</td>
<td>45.3</td>
<td>0.082</td>
</tr>
<tr>
<td>≥30 mm</td>
<td>20</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>Extent of resection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wedge resection</td>
<td>77</td>
<td>62.7</td>
<td>0.925</td>
</tr>
<tr>
<td>Segmentectomy or lobectomy</td>
<td>16</td>
<td>66.7</td>
<td></td>
</tr>
</tbody>
</table>

PM pulmonary metastasis

Fig. 2 Kaplan–Meier overall survival curve after resection for patients with pulmonary metastasis from hepatocellular carcinoma.
and extent of resection (wedge resection vs anatomical resection: lobectomy or segmentectomy). Univariate prognostic analysis showed that a DFI \(\geq 12 \) months is significantly associated with better OS after pulmonary metastasectomy (\(p = 0.026 \)). And maximum diameter <30 mm also tended to be associated with favorable OS, though it did not reach statistical significance (\(p = 0.082 \), Table 2).

Figure 3a reveals that a DFI <12 months was associated with poorer OS after pulmonary metastasectomy (5-year OS, 28.7% vs 59.3%, \(p = 0.026 \)). In addition, a DFI <12 months was also associated with poorer DSS (5-year DSS, 36.2% vs. 62.5%; \(p = 0.038 \); Fig. 3b).

To identify independent prognostic factors, we performed a multivariate analysis for OS using Cox-proportional hazard model. The number of PM [10, 11], DFI [12–17] and the history of recurrence before pulmonary metastasectomy [14, 15] were included in the multivariate analysis as these were reported to be associated with survival outcome of resected PM from HCC. Also, DFI and maximum diameter of PM were included because they were shown to be associated with OS in univariate analysis as above. Table 3 reveals that survival DFI \(\geq 12 \) months was an independent favorable prognostic factor (HR = 2.020, 95% CI, 1.069–3.816, \(p = 0.030 \)). On the other hand, other factors did not reach statistical significance in multivariate analysis.

Discussion

We have shown that a DFI of 12 months or longer is an independent favorable prognostic factor in patients who underwent pulmonary resection for metastasis from HCC. It was supported by the fact that longer DFI of \(\geq 12 \) months is significantly associated with better DSS as well. A possible advantage of our study is the relatively large number of cases, as this is the largest series to investigate outcomes of pulmonary resection for metastasis from HCC to date.

Table 3 Multivariate prognostic analysis by Cox-proportional hazard model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Favorable</th>
<th>Unfavorable</th>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>(p) value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free interval</td>
<td>(\geq 12) months</td>
<td><12 months</td>
<td>2.020</td>
<td>1.069–3.816</td>
<td>0.030</td>
</tr>
<tr>
<td>Maximum diameter of PM</td>
<td><30 mm</td>
<td>(\geq 30) mm</td>
<td>1.145</td>
<td>0.724–1.812</td>
<td>0.563</td>
</tr>
<tr>
<td>Number of PM</td>
<td>Solitary</td>
<td>Multiple</td>
<td>1.258</td>
<td>0.695–2.277</td>
<td>0.449</td>
</tr>
<tr>
<td>History of recurrence before PM</td>
<td>No</td>
<td>Yes</td>
<td>1.757</td>
<td>0.670–3.244</td>
<td>0.123</td>
</tr>
</tbody>
</table>

* Cox proportional hazard model, PM pulmonary metastasis
HCC remains a fatal cancer, despite recent progress in local therapeutic options such as molecular-targeted drugs, transcatheter arterial chemoembolization, and cytotoxic chemotherapy. Pulmonary metastases are the most common among extrahepatic metastases from HCC [18]; however, PM has not been recognized to be suitable for surgical resection. Also, survival rates of the patients with extrahepatic metastases remain poor and are refractory for systemic chemotherapy including Sorafenib [19, 20]. On the other hand, several recent literature researches suggested that pulmonary metastasectomy was an effective option in select patients [7, 8]. Thus, pulmonary metastasectomy possibly provides survival advantages to select patients, even though a possible role of pulmonary metastasectomy has not been established, and its prognostic factors have not been well documented to date. Only several small studies have reported better survival in patients who underwent pulmonary metastasectomy compared to those who underwent other treatments [21, 22]. To this end, it is meaningful to select appropriate candidates for pulmonary metastasectomy from patients with pulmonary metastases from HCC using better prognostic factors.

We conducted this study using the updated multi-institutional retrospective dataset of a Japanese cohort. Our study group previously reported that 5-year survival rate after pulmonary metastasectomy was 69.8 % [10], which was higher than the current result. Meanwhile, 5-year survival rate in the retrospective studies ranges from 27.5 to 100 % [10–17, 23, 24], suggesting survival outcome must be largely affected by patient selection and study period. It sheds light on the importance of selecting candidates for pulmonary metastasectomy. In addition, the current results showed a DFI 12 months is an independent prognostic factor, which can be useful to select candidates for prospective trials as well as clinical practice.

Several prognostic factors after pulmonary resection for PM from HCC have been reported based on variety of study design and patient population. History of recurrence [14, 15], serum alpha-fetoprotein [13, 15, 24], and the number of PM [10, 11] were commonly reported. It is reasonable because these factors might correlate to higher tumor burden. In previous reports, DFI [12–17] was shown to be a prognostic factor after pulmonary metastasectomy of HCC, which agrees with the current findings. A possible explanation for this is that DFI could reflect tumor growth speed as well as aggressiveness of metastatic tumor. Also, we should note that DFI is also associated with survival outcome following pulmonary metastasectomy from other solid malignancies [25, 26]. On the other hand, history of recurrence before pulmonary metastasectomy and the number of PM were not significant, which is consistent with one previous report [12]. In general, the majority of cases of extrahepatic recurrences have multiple organ metastases which are not provided pulmonary metastasectomy. Similarly, our cohort includes less number of cases with multiple PM. Hence, we compared DFI between the two groups according to the number of PM, revealing that cases with single pulmonary metastasis had longer DFI than those with multiple PM (Mean ± SD, 28.8 ± 8.59 vs 23.4 ± 9.80; p = 0.009, Supplementary Fig. 1). The number of PM could be a confounding factor in the previous study [10]. Also, it was suggested that a DFI can more strongly affect prognosis compared with the number of PM in the current series.

Progress of treatment strategy for metastatic HCC such as molecular-targeted drugs, transcatheter arterial chemoembolization, and cytotoxic chemotherapy has improved the survival outcome [11]. However, several recent studies have demonstrated that survival outcome after recurrence in patients with extrahepatic recurrence after hepatic resection remains poor, ranging from 16.2 to 24.0 % of 5-year OS after recurrence [27–29]. It is significantly poorer than those with intrahepatic recurrence [27–29]. They also mentioned that most of the patients with extrahepatic recurrence did not undergo local therapy, including surgical resection. Five-year OS after recurrence of the current cohort was better than those, although it should not be directly compared because of the differences of patient backgrounds and characteristics. It is expected that OS after recurrence will be improved as new therapeutic drugs progress in the near future. Thus, clinical significance of pulmonary metastasectomy including repeated metastasectomy must be reevaluated considering possible improvement of survival outcome. In order to clarify the efficacy of pulmonary resection for metastasis from HCC, a prospective randomized trial is necessary. To this end, our findings from relatively large cohort would be useful to select candidates for clinical trials in the future.

The present study has several limitations due to the nature of retrospective registry data including selection bias as well as numerous confounders such as long period of inclusion, disparate surgical techniques among institutions, and frequent incomplete data. Also, we could not conduct survival analysis in matched cohort because of the insufficient number of patients. Pulmonary metastasectomy from various malignancies including HCC has been widely performed based on the uncertain evidence for many years in general practice. This might be caused by lack of control data, heterogeneity of patient background, insufficient follow-up data, lack of intention to treat analysis, and so on [30, 31]. Especially in pulmonary metastasectomy for HCC, a variety of factors including former treatment, biological activity of hepatitis virus, liver function, and treatment for recurrence following pulmonary metastasectomy could affect patient outcomes. Information of these
Conflict of interest

Compliance with ethical standards

Acknowledgments

References

